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PREFACE

This research was initiated in 1972 during the author's final year of

residence at the University of Colorado, Boulder, Colorado. The work was

undertaken as partial fulfillment of the requirement for a Doctor of Philosophy

degree in Aerospace Engineering Sciences at the University of Colorado.

The major portion of the research was completed while the author was assigned

to the Frank J. Seiler Research Laboratory (AFSC). The computational effort was

accomplished primarily at the Education and Research Computer Center facilities

of the United States Air Force Acadcmy.

The perturbation technique used in this research was pursued sufficiently

to reveal a more simplified procedure for rapid recovery of the coefficients

which must be calculated in the derivation of the perturbation equations. The

original procedure tor these calculations required an extensive period of tedious

effort to produce the perturbation expressions through fourth order in successive

approximation. The revelation of the simplified procedure made it possible to

reproduce the first four orders of results in significantly reduced time as well

as calculate an additional five orders for the perturbation equations.

This report documents those results obtained from the initial effort to

derive the first four orders in the expansion employing the original perturbation

computational methods.
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CHAPTER I

INTRODUCTION

The structure of a normal shock wave in a monatomic gas has

been investigated extensively by theoreticians and experimentalists

for many years. The shock wave may be represented as a one dimen-

sional gasdynamic phenomenon in which large departures from thermo-

dynamic equilibrium occur over a few mean free paths within the

shock wave. The one dimensional shock wave should be completely

described by the Boltzmann equation, if the Boltzmann equation is

correct. But, because of the nonlinearity and complex nature of the

collision integral, trustworthy solutions of the Boltzmann equation

have been obtained only in cases close to equilibrium, and certainly

1
not for strong shock waves.

This effort is a theoretical investigation of the higher

order gasdynamic equations for shock wave structure obtained by

applying the well known Chapman-Enskog development to the Boltzmann

equation through fourth order in spatial derivatives. The motivation

1The relative change in macroscopic variables over a local
mean free path becomes appreciable even for modest upstream Mach
numbers (M1 ). For example, for M = 1.5 the relative change in

macroscopic variables over a local mean free path is less than 0.1,
but for M = 2.5 the relative change in macroscopic variables over

a local mean free path exceeds 0.4 in the interior of the shock
wave. These estimates are based on numerical integration of the
Navier-Stokes differential equations.
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of this work is t: strive toward a test of the nonlinear features of

the Boltzmann equation, which has not been done before. The

Chapman-Enskog development has been used because it has been shown

to have quantitative physical significance beyond the Navier-Stokes

level in studies of high frequency sound propogation.
2

An additional motivaticn for using the Chapman-Enskog

development has been the desire to reconcile conflicting opinions

in the literature about its utility drawn from studies of high
3 4

frequency sound waves and weak shock waves.

The gasdynamic equations derived and investigated in this

report are for a gas of Maxwell molecules (inverse fifth power

repulsion). The restriction to Maxwell molecules affords consider-

able mathematical simplification in the Boltzmann collision

operator. Although such an idealized molecular model has analytical

advantage, it cannot be expected to lead to decisive comparision

with experiment. Nevertheless, it seems reasonable to hope that

results for shock waves in a gas of Maxwell molecules may provide

qualitative insights and guides to future work with a realistic

potential, for such correspondence has been found for other phenomena.

2J. D. Foch Jr and G. W. Ford, in Studies in Statistical
Mechanics, edited by 3. de Boer and G. E. Uhlenbeck (North Holland,
Amsterdam, 1970), Vol. V.

C. S. Wang Chang and G. E. Uhlenbeck, in Studies in Statis-
tical Mechanics, edited by J. de Boer and G. E. Uhlenbeck (North
Holland, Amsterdam, 1970), Vol. V.

4L. Talbot and F. S. Sherman, NASA Memorandum 12-14-58W
(1959); F. S. Sherman and L. Talbot, in Proceedings of the First
International Symposium on Rarefied Gas Dynamics, edited by F. M.
Devienne (New York: Pergamon, 1960), 161.
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The Chapman-Enskog expansion applied to the Boltzmann

equation yields successively the Euler (zeroth order), Navier-

Stokes (first order), Burnett (second order), Super-Burnett (third

order), Super-Super-Burnett (fourth order), ...... gasdynamic

differential quations.

The derivation and solution of the Navier-Stokes equations
are well documented in the literature.5 Gilbarg and Paolucci6

successfully integrated the first order equations, thus providing a

practical method for constructing shock profiles from the differ-

ential equations. Standard Runge-Kutta numerical integration

methods yield results for the variation of gas properties through

the shock for any incident Mach number (M1).

The results of similar efforts applied to the Burnett differ-

7
ential equations were reported by Sherman and Talbot, who found that

numerical integration was successful only for Mach numbers less than

8
about 2.1. One of the early findings in the present work was that

5S. Chapman and T. G. Cowling, The Mathematical Theory of
Non-Uniform Gases (Third edition, Cambridge University Press,
1970); W. G. Vincenti and C. H. Kruger Jr., Introduction to Physical
Gas Dynamics (John Wiley & Sons, 1965); L. M. Schwartz and D. F.
Hornig, Physics of Fluids 12, 1669 (1963); D. Gilbarg and D.
Paolucci, Journal of Rational Mechanics and Analysis 2, 617 (1953).

c Gilbarg and Paolucci, Journal of Rational Mechanics, op.
cit.

7Talbot and Sherman, NASA Memorandum, op. cit.; Sherman
and Talbot, Proceedings of the First International Symposium, op.
cit.

8The equations used by Sherman and Talbot contain an error,
but the error has negligible effect on their results. In the expres-
sion for pxx on page 28 of reference 2, and again on page 164 of

reference 3, the coefficient of (11 /p)'(du/dx)2 is 40/27; it should
be 8/9.
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the Super-Burnett and Super-Super-Burnett equations are not amenable

to conventional methods of numerical integration for any Mach number.

Nevertheless, Montgomery9 has reported a proof of the existence of

shock wave solutions for the higher order gasdynamic equations for

Mach numbers close to unity, although the uniqueness of these solu-

tions is not yet established.

10
Recent experimental findings of Alsmeyer and earlier

findings of Schmidt 1 I provide evidence of the inadequacy of the

Navier-Stokes equations for describing shock wave structure. The

discrepancy between the first order Navier-Stokes theory and experi-

ment becomes conspicuous when the asymmetry Q of the normalized

density profile R p(z) is examined as a function of Mach number M1.

Following the conventions of Schmidt and Alsmeyer, R (z) and Q are

defined according to the following relationships:

o(z)-O1

R (z) =P2-Pl (I-1)

0

ffR (z)]dz
Q P = WlR d (1-2)

o p

In equation (1-1) the subscript 1 corresponds to conditions far

upstream of the shock wave, and the subscript 2 corresponds to

conditions far downstream of the shock wave. This notation and the

l9

J. T. Montgomery, Physics of Fluids 18, 148 (1975).

10H. Alsmeyer, to be published in Journal of Fluid Mechanics.

11B. Schmidt, Journal of Fluid Mechanics 39, 361 (1969).
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choice of the origin of the coordinate system at the center of the

density profile (R = 0.5) are illustrated in Figure 1.

R P z)

1.0

PVT1  P2'T2

0 z

Figure 1 - Characteristic variation of the normalized density
across a normal shock wave.

The Navier-Stokes theoretical result for Q based on a
p

realistic potential (viscosity p - T0 .68) and the data from electron

beam measurements of R P(z) (Schmidt 1969, Alsmeyer 1975) are plotted

versus the upstream Mach number M1 in Figure 2. It is quite evident

from Figure 2 that the Navier-Stokes theory gives unsatisfactory

results even at low Mach numbers.

The failure of numerical Integration methods to provide

solutions to the higher order gasdynamic differential equations

necessitated the development in this effort of an analytic (pertur-

bation) method to obtain the solutions. The gas properties were

sought as perturbation expansions, with the expansion parameter a

suitable function of the shock Mach number. These perturbation

methods were applied to yield successive approximations for gas

property variations across the shock.

The numerical integration solutions for the Navier-Stokes and

Burnett equations served as test cases for the perturbation
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1.4"

01a

S1.3
*-W

4.1

0

0 0

0

2: O3.0 4.0

0 0

0
0.9

Figure 2 - Density asymmetry quotient (Q ) in a normal shock wave
as a function of upstream Mach number (M1). A comparison
of the Navier-Stokes numerical integration results for a
realistic potential with experiment.

Navier-Stokes numerical integration

Experiment - Alsmeyer (1975)

o Experiment - Schmidt (1969)

-t
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expansions. Reasonable agreement between the results of the two

approaches was obtained for the Navier-Stokes and Burnett equations

and this agreement served as the rationale for carrying out the

perturbation calculations for the higher order gasdynamic equations.

In addition to the authors already mentioned, some additional

references are appropriate here to cite other theoretical and experi-

mental efforts of relevance to this report. No attempt will be

made to give an historical account of the extensive efforts of the

many investigators of shock wave structure. For such an account,

the reader is referred to a stimulating and thorough publication by

Fiszdon 1 2 containing an extensive bibliography of some 150 theoreti-

cal and experimental references on the subject. In his paper,

Fiszdon classifies the theoretical attempts to obtain solutions for

shock structure as a) Continuum Gas Theories, b) Kinetic Models of

the Boltzmann Collision Integral, c) Kinetic Models of the Distri-

bution Functions, d) Monte Carlo Methods.

In the first theoretical class, the principal method is the

application of the Chapman-Enskog development to the Boltzmann

equation to obtain the constitutive gasdynamic relations for sh)ck

structure. In the second class, the BGK method1 3 is one of the best

known efforts to develop a simplified model of the Boltzmann

12W. Fiszdon, in Proceedings of the Ninth International

Symposium on Rarefied Gas Dynamics, edited by E. Becker (Academic
Press, 1974) 2, B.23.

P. L. Bhatnagar, E. P. Gross, and M. Krook, Physical

Review 94, 511 (1954).
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collision integral. However, as Alsrneyer reports, experimental

results show clearly the failure of the BGK solutions even for low

Mach numbers.

The bimodal velocity distribution function introduced by

Mott-Smith1 5 and the subsequent shock thickness calculations of

16
Muckenfuss are characteristic of the kinetic model investigations

in the Lhird theoretical class. The Mott-Smith method yields

symmetric density profiles at all Mach numbers, whereas the experi-

mental density profiles are asymmetric for all Mach numbers.

In recent years, some of the most interesting studies of shock

structure have centered on the development of Monte Carlo techniques

in an effort to find a solution of the complete Boltzmann equation.

17
Hicks and Yen and their associates have used Nordsieck's Monte

Carlo method 18 to "solve" the Boltzmann equation for the plane steady

14Alsmeyer, op. cit.

15H. M. Mott-Smith, Physical Review 82, 885 (1951).

6C. Muckenfuss, Physics of Fluids 5, 1325 (1962).

17A. Nordsieck and B. L. Hicks, in Proceedings of the Fifth

International Symposium on Rarefied Gas Dynamics, edited by C. L.
Brundin (Academic Press, 1967) 1, 695; S. M. Yen, Physics of Fluids
9, 1417 (1966); B. L. Hicks and S. M. Yen, Physics of Fluids 10, 458
(1967); T. Holtz, E. P. Muntz, and S. M. Yen, Physics of Fluids 14,
545 (1971); S. M. Yen, International Journal of Heat and Mass Trans-
fer 14, 1865 (1971); B. L. Hicks, S. M. Yen, and J. Reilly, Journal
of Fluid Mechanics 53, 85 (1972); S. M. Yen, W. P. Walters, W. Ng,
and J. R. Flood, in Proceedings of the Eighth International Symposium
on Rarefield Gas Dynamics, edited by K. Karamcheti (Academic Press,
1974) 1, 137; S. M. Yen, W. Ng, R. M. Osten, and W. P. Walters,
Coordinated Science Laboratory Progress Report, July 1971 through
June 1972, August 1972; S. M. Yen and W. Ng, Journal of Fluid Mechanics
65, 127 (1974).

18Nordsieck and Hicks, op. cit.

77
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shock wave. In an independent effort, Bird1 9 has developed a Monte

Carlo direct simulation method or numerical experiment in which he

tracks, in physical space, the motions and interactions of the mole-

cules across the shock. Bird2 0 has claimed that his direct simulation

method is entirely consistent with solving the Boltzmann equation.

The manifestly different stochastic techniques called Monte

Carlo methods by Hicks, Yen and associates and by Bird yield substano-

tially different quantitative results for the density profiles for

both elastic spheres and Maxwell molecules. This conspicuous differ-

ence in the results for each oi the molecular models is clearly

21
illustrated in the references and is attributed t& the differences

in the Monte Carlo method used.

The Mont, -arlo methods have been reported to give the best

agreement with experiment. In addition to the elastic sphere and

Maxwell molecule data calculated by Hicks, Yen (et al.) and by Bird,

Bird's method has been used to calculate shock profiles for a number

22
of other repulsive intermolecular potentials. Schmidt reported

excellent agreement between his experimental results in argon and

1 9G. A. Bird, Physics of Fluids 6, 1518 (1963); G. A. Bird,
in Proceedings of the Fourth International Symposium on Rarefied
Gas Dynamics, edited by J. H. de Leeuw (Academic Press, 1965) 1,
216; G. A. Bird, Journal of Fluid Mechanics 30, 479 (1967); G. A.
Bird, in Proceedings of the Sixth International Symposium on Rarefied
Gas Dynamics, edited by L. Trilling and H. Y. Wachman (Academic Press,
1969) 1, 301; G. A. Bird, Physics of Fluids 13, 1172 and 2676 (1970).

20 Bird, Physics of Fluids 13, op. cit.

21W. Fiszdon, op. cit.; Yen and Ng, op. cit.

22 Schmidt, op. cit.

KT
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Bird's inverse twelfth-power force data at one Mach number (MI = 8.0).

23
In later experiments, Alsmeyer indicates excellent agreement

between his experimental data and the Bird Monte Carlo calculations

for the inverse tenth-power force data for the complete range of

Mach numbers up to M1 = 9.0. Alsmeyer also suggests that it is

reasonable to expect improved results from the Hicks and Yen method

for more realistic intermolecular potentials.

In a recent effort to infer the intermolecular potential

from shock structure, Sturtevant and Steinhilper 24 determined

intermolecular potential parameters for four monatomic gases from

accurate shock tube experiments using Bird's Monte Carlo results.

The results indicate that the profiles are generally insensitive to

different potentials at high Mach numbers. Reliable results at

low Mach numbers are not yet available.

The present efforts to derive and solve higher oraer gas-

dynamic equations of shock structure will be discussed briefly to

summarize the developments given in the succeeding chapters of this

report.

Chapter II includes the derivation of the higher order differ-

ential equations for the density (or velocity) and temperature as func-

tinns of cistance through the shock wave. The conservation equations

23Alsmeyer, op. cit.

24B. Sturtevant and E. A. Steinhilper, in Proceedings of the

Eighth International Symposium on Rarefied Gas Dynamics, edited by
K. Karamcheti (Academic Press, 1974) 1, 159.



are given for conditions inside the shock and the higher order

constitutive relationships are obtained from the Chapman-Enskog

expansion applied to the Boltzmann equation. The derivation of the

differential equations in each spatial order involves the deter-

mination of the corresponding heat flux and viscous stress contri-

butions. The highest order of the spatial derivatives determined

in these contributions specify the order of the corresponding differ-

ential equations.

Chapter III includes methods to solve the Navier-Stokes

equations of shock structure. The standard numerical integration

methods are presented, followed by the introduction of the perturba-

tion technique which was developed to obtain solutions of the higher

order differential equations. The perturbation method, though not

specifically required to provide solutions of the Navier-Stokes

equations, is introduced in Chapter III because the rationale for

its applicability to the higher order developments is the same as

that applied to the Navier-Stokes equations.

Chapter IV provides a discussion of the limitations of

standard numerical integration methods in the Burnett and higher

order developments. The results of the higher order perturbation

calculations are presented, and a pattern is discerned among the

resulting equations which reveals a formal similarity among the

Navier-Stokes and higher order results.

In Chapter V, shock profiles obtained from the numerical

integration and perturbation methods are presented and compared.

CI
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The utility of the perturbation method is evident from the relative

agreement between the results of the two methods in the Navier-

Stokes and Burnett (M1<2.1) developments.

Chapter VI provides a qualitative look at the present theo-

retical results for Maxwell molecules in light of recent experimental

findings. The potential need and means for extending the pertur-

bation method to higher orders are discussed as an outlook for future
wr

. work.

-I

.*



CHAPTER II

HIGHER ORDERS OF THE CHAPMAN-ENSKOG

DEVELOPMENT FOR MAXWELL MOLECULES

Conservation Equations for the Steady State
One Dimensional Normal Shock Wave

The higher order gasdynamic equations for a Maxwell gas will

be derived from the Boltzmann equation in this chapter as a first

step in the calculation of the structure of a normal shock wave.

The derivation is patterned after the well known Chapman-Enskog

development for solving the Boltzmann equation in successive approxi-

mation.

The starting point for the Chapman-Enskog development is the

Boltzmann equation for the velocity distribution function f(r,v,t),

-= vi + v d v l d  g (g 'X ) [f 'f '  - ffl . I -
3t i ri V111

The first term on the right gives the rate of change of molecules

of velocity class v which are contained in a specific volume element

of physical space with velocity in a specific volume element of

velocity space due to free flight. The integral on the right-hand

side provides the rate of change of molecules of velocity class v

due to collisions with other molecules. The integral sum of all

encounters with molecules (specified as class v]) includes the

collisional processes which either replenish or deplete the molecular
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count in the volume elements of the physical and velocity space. The

velocity distribution functions f and f in the collibion integral

are representative of conditions both prior to (unprimed) and after

(primed) collision.

In the collision integral g is Iv - V 1 , and G(g,X) is the

differential cross section for aai encounter in which the relative

velocity vecLor is turned or s'attered through an angle X into the

element of solid angle dO. For a gas consisting of atoms of mass

m interacting with an. intermolecular potential 4(r) = the
r

expression for the cross section is written as

1
2K

go(g,X) = (.-) F(X). (11-2)

Such a (fictitious) gas was considered by Maxwell, and is referred

to as the Maxwell model.

To develop the Chapman-Enskog expansion for departures from

the equilibrium condition, the velocity distribution function is

sought in the form

f = f(0) + f(1) + f(2) . ..... (11-3)

where f(0) is the local Maxwell distribution, f(1) is proportional

to spatial derivatives, f(2) is proportional to squares of spatial

derivatives and second derivatives, etc. The local equilibrium

distribution f(O) is given by

3
f(0) in 2 m ( -*2}

f = n(yM) exp{- 2- - u) 2 (11-4)

where m is the molecular mass, n is the local molecular number den-

sity, T is the local gas temperature, and k is Boltzmann's constant.
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The expression (v - u) is called the peculiar or thermal

4.
velocity of the gas, is denoted by V, and is equal to the difference

between the molecular velocity (v) ani the mean flow velocity of the

m2
molecules (u). The combination (2) has dimensions of (1/velocity)

and will be employed frequently in nondimensionalizing velocity terms

throughout this work.

Using the Boltzmann equation, as presented above, and taking

1 2
moments with respect to v of 1, v, and i v yields the one-dimensional

conservation equations for the normal shock wave. The mean gas flow

direction is taken along the Z-coordinate. Detailed treatments of

the moment calculations are plentiful in the literature and will not

be repeated in this report. The results are given below.

MASS:

an an au
-- + u -_ + n -= 0 (11-5)at 3z az

MOMENTUM:

au au 1 aPa- + u a +- -- L 0 (11-6)at 3z nm 3z

ENERGY:

3 nk (LT + u L) + + P = 0 (11-7)

iJ. D. Foch Jr. and G. W. Ford, in Studies in Statistical

Mechanics, edited by J. de Boer and G. E. Uhlenbeck (North Holland,

Amsterdam, 1970), Vol. V; S. ChampmanandT. G. Cowling, The
Mathematical Theory of Non-Uniform Gases (Third edition, Cambridge
University Press, 1970); W. G. Vincenti and C. H. Kruger Jr.,
Introduction to Physical Gas Dynamics (John Wiley & Sons, 1965).

'
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In these equations

P = P (z,t) fd~fm V2  (11-8)

and

2 (II-9)q = q (z,t) - fdf M V2 V

where P is the pressure minus the viscous stress and q is the heat

flux.

The steady state equations for a normal shock wave are easily

found from the above by neglecting the time derivatives and noting

that the momentum equation can be used in the energy equation to form

an exact energy differential equation. Since, in steady state, all

three differential equations are exact, each equation can be inte-

grated once to give the results below.

MASS:

Pu Pi 11 i  (ll-5a)

MOMENTUM:

Pu + P P iu2 + nikTi  (II-6a)

ENERGY:

2 
2

3 r + ! 2pu + uP + q T + (II-7a)
2 m m Piui

In these equations p is the mass density. The quantities on the

right-hand sides of the equations are integration constants, evalu-

ated either upstream (i = 1) or downstream (i = 2), which represent

the constant fluxes of mass, momentum, and energy. Equations

(Il-5a), (lI-6a), and(TI-7a) describe the shock wave illustrated in

Figure 1.
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Alternate Forms of the Viscous Stress and Heat
Flux for the Higher Order Developments

The uniformity expansion for the velocity distribution

function induces uniformity expansions for the heat flux q and

stress P which reduce in the one-dimensional case to q and Pi z ZZ'

or simply q and P. Following methods employed in the Chapman-

Enskog solution of the Boltzmann equation, the velocity distribution

function is further defined in the following expanded series form:

f = f (
1) i + 0(l) + ,(2) + ,(3) + t..... (l1-10)

In zeroth order, f = f(O), which implier q = 0 and P = nkT, and the

conservation equations reduce to the equations of equilibrium flow.

The inclusion of the higher order contributions to f leads to the

Navier-Stokes, Burnett, and higher order macroscopic equations of

gas dynamics.

Again following Chapman and Enskog, the following require-

ments will be imposed in the development:

fdf = 0, n>l (II-11)

fd'f(n)v 0, n>l (11-12)

fd'f(n)v2  0, n>l. (11-13)

These requirements are consistent with the equilibrium solution but

are not necessitated by it. The requirements will introduce some

tNote: For clarity in expressing the results of the moment
calculations throughout the remainder of this chapter, the arguments
(v) and (v ) for the velocity distribution functions have been

omitted in the equations.

• 4u m u m m n m
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very effective simplifications in the host of moment calculations

which are required to determine the gasdynamic forms of P and q.

It is convenient to express the integral requirements (II-11),

(11-12), and (11-13) in terms of the peculiar velocity V:

dvf (n ) = 0, n>l (I-ila)

fdvfrv = 0, n>l (II-12a)
"dfn)v ,nl (ll--13a)

Introducing the expanded form for the velocity distribution

function in (11-8) and (11-9), the latter expressions give

P nkT + P(1) +P (2) + p(3) ..... , (11-14)

q q (1) + q(2) + q(3) + (11-15)

where

P(n) = fd-f(n)mv2, n>l, (11-16)
z -

q (n) = fdvf(n) m V2V n>l. (11-17)

With the aid of (l-12a) and (II-13a) the expressions for (11-16) and

(11-17) may also be written in the form

P ( 2fdvf(n) m[2V2 -V (11-18)2z 2

(n) - ff(n) m - 2(11-19)q d-V~ dV 119

where the equality of dv and dV in velocity space has been employed.

The velocity forms in (11-18) and(II-19), nondimensionalized by

factors of i2jm' are eigenfunctions associated with the linearizel

collision operator for Maxwell molecules. These and other
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eigenfuctions (and their eigenvalues) are tabulated in Appendix A.

Using c m V and the notation of Appendix A leads to

(n) 4 i 2
P n nkT Jdc e' n 02(c) (11-20)

3 ~3/2 0

1
2 2

(n) f 12kT n) ifd - n
q nkT - c c) (11-21)7Tm) 3/2 11iC)

Spatially Ordered Equations Derived from the
Expanded Velocity Distribution Function

Applied to the Boltzmann Equation

The developments which follow in the remaining sections of

this chapter involve solution of the Boltzmann equation using the

expanded form of the velocity distribution function through

f( 4 ) = f(0)( 4 ), but only to the extent necessary to determine P

(4) (4)
and q through P and q

In applying the full Chapman-Enskog method to the solution

of the Boltzmann equation, the usual procedure is to substitute

expanded forms of the velocity distribution (i.e., f = f(O)

f = f(0 + f l), ... etc.) into both sides of the equation and,

(ni)in successive approximation, solve for the (n. Subsequently, the

(n) are used in the integrals which define P(n) and q(n).

The present effort has been designed to circumvent complete

determination of the ,(n) since the required expressions for the

viscous stress and heat flux contributions may be obtained by less

cumbersome means.

In the present effort, as in the Chapman-Enskog method, an

essential point is the elimination of substantial derivatives of

4- 4,'• m ••m m •m m m~m m m mm ~ m m m

4 nm m m• m mmm
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density, flow velocity, and temperature in favor of spatial deriva-

tives using conservation equations (11-5),(II-6), and (11-7). It

is this point, as will become apparent subsequently, that leads to

dependence of the f(n) on spatial derivatives.

By suitably expanding the expressions involv'ng f and fl in

the collision integral, contributions involving the P(n) may be

separated according to the order of their spatial derivatives.

Once the ordering exerci.se is complete for each term in the

Boltzmann equation, the ordered contributions on the left and right-

hand sides are equated, giving a series of equations based on the

order of the spatial derivatives. After some preliminary rearrange-

ments, the resulting equations are in suitable format for calculating

moments involving specific (v), such as those occurring in the

definitions of P and q. The "selected" p(v) consist of only those

velocity functions which are indispensable for calculating the P(n)

(n)
and q .

As will be seen, the working equations employed in this

method have considerable utility in that they allow the calculation

of p(n) and q(n) from lower order moments involving only a few

eigenfunctions such as 02 (8) and TV (8). In most cases, the lower

order moments needed in a given order are already known from the

previous orders. However, each new order does introduce a few new

moments which must be evaluated. Even so, the explicit forms of the

(n) need not be known for any of the higher order work in deter-

mining the heat flux and viscous stress contributions. In fact,
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once the lower order moments have been calculated, the remaining

effort requires only a very careful algebraic exercise.

To carry out the specific calculations as outlined above,

the one-dimensional form of the Boltzman-i equation is written as

2

at + Vdz  = v 1dV1fd m F(X) [f'f - ffl] (11-22)

where, to repeat the differential scattering cross section for

Maxwell molecules
1

G(g,x) M F(Y) (11-23)

The time derivative of the velocity distribution becomes

f f I-[ + + + ( +

a t at L

+ + (i) + , (2) + (3) + 1af 0 ) (11-24)

and the streaming term can be expressed as

z = (u + Vz)f(0 ) a + q(l) + (2) + ( +

+ (u + Vz ) El + () + ,(2) + (3) + ... az
(11-25)

With ,(n) of order n in spatial derivatives, the left-hand

side of the Boltzmann equation, (11-22), may be rearranged according

to the order of the spatial derivatives as

V

r-
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af + f - +l V0 af(O 10

+zaz t z z

D
+i - [ (0) + f (0) (1) + f a f ( (2))Dt z z

Dt
+ f(0) + f(0) (1) + f(0) (2) + f(0) () +V f( ) (3

+ ..... * , (11-26)

Dk

where D represents the ktb order part (in the sense of spatial

derivatives)of the substantial derivative of the quantity differen-

tiated. Similarly, { } means all terms within the enclosure that
k

are of order k.

Substitution of f and f in the collision term results in a

similar ordering according to the order of the spatial derivatives

(n)
of the $ .

) Since, in local equilibrium, the products of the

distribution functions before and after collision are equal as a

consequence of conservation of energy and momentum (i.e.,

f(O)f(O) = f(O)f(O)), the spatially ordered form of the collision

integral may be arranged as
1

fvdVlfdIQ j F(X) ff'l - ff =

2

fv 1 dfdi[I F(X) f f [ +

+2) (2)' + (l' (1), -,(2) -(2) ( 1
+ 1+~
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_ (3)'+(3)1 '+(2)' (I) ' (25) 1 '(I)' 1(3)_ (3) _ '(2) (i)_(2) (1)

1 1

"1 1 1 1

('(4)1(4)(3)5 (1) (3)'(2)'(2)
S - 1 4 + • (11-27)

Equating the spatially ordered expressions in (11-26) and (11-27)

leads to the basic equations for determining P and q(n)

Determination of P(1) and q (1)

P(1) (1)The first-order calculations required to obtain P and q

require the evaluation of the derivatives and the associated

integrals which arise from the first-order terms in (11-26) and

(11-27).

In preparation for the evaluation of the substantial and

spatial derivative expressions which will be used throughout the

remainder of this chapter, the following preliminary relationships

will be helpful.

Starting with the equation for the equilibrium distribution

(0) m / 2 2
f n -j exp - v + v + (v U) (11-28)

the ubstntia dervatie D ( 0 )

the substantial derivative may be conveniently obtained from

+ u(0-----. + u f(0), (11-29)
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with

Znf( 0 ) = Pn n + 9 ,n - Zn T

m 2 + v2 + (v-U) (11-30)-2kT [Vx y Vz

The resulting substantial derivative may be expressed in the form

NO )  (0) 2 mV Du
Dt n2 2kT Dt z(11-31)

Converting to dimensionless velocity forms and recognizing from the

tables for the Trk (c) in Appendix A that

T00(,) ,(II-32a)

T0(c) = C , (II-32b)

T 01 c) -c z)(11-32c)

the substantial derivative may be further expressed as

Df(0  ( [) iDn ( 1 DT
Dt f T nt , T10 c)T Dt

+ 2 [c0(c) (11-33)

Similar operations on the remtaining spatial derivative term

of equation (11-26) yields

V f(O) (0) 201( I/ + 3n -llr [ m r z

2/
(0+ ~ 2 k 1 on*) T (, + T c) au k

10 1 10n 3 02 3l(11-34)

+ 2[ 1 0(c - i0 + 2 'P0 2  (11-34)

31 g~



25

The above result requires some "construction" of the terms rk (,)

from the dimensionless velocity forms.

To assist in examining the order of the contributions in

the conservation equations as applied to the substantial deriva-

tives in (11-33), the conservation equations are written below so

as to isolate the substantial derivatives on one side of the

equation. For later reference, the spatial order of each term is

entered above the term, taking into account the final order of the

term after carrying out the differentiations and multiplications

indicated.

Dn _

Dt - z (11-35)

Du kT l~ ~ k T!Dt m T3i m n ai

I P p(1) p(2) + (3) + (4) (II-36)
nm z

DT 2 u 2 (i) p(2) + (3) + ... u
Dt - z 3nk 3z

2 D + q (2) q(3) q(4) (11-37)
3nk z q1 +q .....

The first-order part of (11-26) is constructed from the

first-order part of (11-33) and this involves contributions from all

three of the above equations. Summing the contributions from (11-33)

and (11-34) yields

D () (0) ()~ ~1a1 f (0) 0 (2kT) I lT1t - f 02  3z- ii(c) T uz .(II-38)Dt i 02 L 3
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The remaining work to determine the explicit forms of P(1)

and q(l) involves the evaluation of the first-order part of the

collision integral given in (11-27), which is written below as

1 2~ /2 (0) (0)(1)

f 4d 1 fdl{M1) F (x) f (v)f 0(V )A~() (11-39)

where

+ 

*

dV = dvI ,

and f(0)(v) is independent of the integration over v1.

Expression (11-39) is f(0 )(v) times the linearized collision

operator J which, when operating on the various Tr (c) introduced

earlier, yields

J [Trk(C)] = crkT rk()

Here, J has been defined by

-1/2
J~ci fv1 dvlfdQ['- F(X)f(u)A1 P(c)J (11-40)

Appendix A provides the following results:

2

-- 2fdCle fdQF(X)ALYll(cJ = -72IAI / 2  (11-41)

2 1/2

1 AC02l 2 2[Y02( (11-42)

In the above A2 is a pure number determined from

A2 =f0 dX sinX(l-cos 2x) F(X)

and X is the deflection angle associated with binary collisions.

Ir
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A comparison of (11-41) and (11-42) with (11-38) shows that

{j/ 2  mk1 I / 2

where n S = --T-- and ( ) = -- T are
LT + 4 Lu (11-43)

wher Ead are the eigenvalues correspondingwhr 11 = 2 an 02 2 2

to TII(C) and T02(c).

Knowing 0l), the first-order contributions to the viscous

stress and heat flux may also be determined from the definitions

(11-20) and (11-21). From the orthogonality of the Trk (c) it follows

that
1ml/ 2

p(1) 4 1nkT - 44U '_ 1 f ec 2
P 3 nE 02 [ jr3 /2 2 (c)] 2,

r I /2

M
- - kT 2 (11-44)

where the integral is of a type tabulated in Appendix A.

Introducing the abbreviation

1/2
2 JL 2K (11-45)

the first-order viscous stress term may be written as

(1) 4 Du
Z P (1 =- , (11-46)

with p recognizable as the gas viscosity.
/

A similar calculation gives the first-order heat flux term

( 1/2
2 Im

q(1) 5 k 5 _2T ITK aT (11-47)
2 m vi2 3z'

72
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or

q (1) K T (11-48)

with the thermal conductivity K defined by

15 k
K m (11-49)

Determination of P(2) and q(2)

(2)
The integral equation for ( is composed of the second-

order parts of (11-26) and (11-27). Separating the collision

integrals which involve p(2) from those which involve (i) the
(2) (2

expressions for P and q (2) can be determined from

f v1 dVlf dQ[ m (v K (~fl(~ ) [(2)' +q( 2) '_ (2) -~(2)]

Ffxdf(0)(v2f O)(vl) + - qjl -l

+ D/2fO)(}) V[ (1)() '  (11-50)

In order to determine P (2) without solving explicitly for

(2) 22 , multiply (11-50) by mV , integrate over all v, and use the

H-Theorem transformations on the collision integrals. These

operations yield
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1

(0 2 (Of~2)~ [2]

f dvff(O)d(f f2- FF(X) A V

2vv 1 1 1 (dF r2z
1g

+fdvmV - (1f-51)
v z dtz

D f (0)
+fv dvmv z dt '(1I-51)

where, for any T( )

A [T] = [T' +' - T - TI

Using the explicit results for the relationship between V',

V1V and V, V1 (from the dynamics of binary collisions), integration

over the solid angle in the collision integrals of (11-51) may be

effected with the result that

fdQF(X)mnA [V2] - mffdXsinX(l - cos 2X) F(X).

.Ti [V2 r.2 + (Vi ~.V - 2VVlz +- . -V . (11-52)

Several of the terms of the right-hand side of (11-52) do not

survive the subsequent integration over and 1, either because

they occur as odd functions of velocity times the even function

r'', or because of the requirements (11-11), (11-12), or 11-13).

Thus, the collision integral on the left-hand side of (11-51)

reduces to
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1

fdvfTh 2 f dv f Uf _j_]rF (X)mA I'
1

V 2K) 2  (2)- -TA ni-I P. (11-53)

The collision integral on the right-hand side of (11-51) vanishes.

The remaining integrals in (11-51) containing the substantial

and spatial derivatives can be rewritten by noting that the inte-

gration over velocity space and the differentiation with respect to

tibe and physical space are independent, and hence commute. Thus,

dvm 2 D 2 ( M

vd (f( 0 ),( 1 )) =

f 2 2(f(0)(1) - () D1 ) (mV, (11-54)
Dt v z v Dt- z

and

fdvm 3  f 3 0) ( if(0)Pl)) M
Svdv z =

S r 3 (0) (1) vdvf( 1) (m) (II-55)

Tz v ua
Recalling that V= v - u(z,t), which implies a Z au,

z az

the preceding results may be combined to give
1

2- 2~{1 nI

2fD '2(0 ~3 (0) (1)
2 dv 22f (0)+ ( + vmV f

+ vdvf (0) (1) (3mVz) + D- (11-56)
+fv d fz az v z D t

Since f(0) and (l) are known explicitly, the remaining

integrals in (11-56) may now be evaluated explicitly. Doing so

(and then performing the differentiations) gives
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p(2) u2)8 8 
2  k n T

= , p 913 mn 3z z

+4kT [z) 4 kT 32n
3 mn 2 zmna2

+ [ m 32 m T z]j2 (11-57)

with p the pressure, p = nkT.

The q(2) calculations proceed in exactly the same manner

1 2
except (11-50) is multiplied throughout by ImV V and integratedz

over all v. The intermediate result from this operation is

TA 2  n q(2) = D2 m (f(d)v)
- i qt v  

2 V z

2KJ

( 2 Dlu + I V2Vz(p(0) (I ))

()()m 3 m 2

+ f dvf(0 ) )  2V + 2V2V ]u+ fdvf V2V -D (11-58)

Performing the integrations and extracting the second-order

contributions, the final result for q (2)is found to be

2 2(2 95 u uT 7 u 2 3n u
q nzz((11-59)q P T 8 Z 3z 4 -z2  _n' -z '5z

The derivatives of the number density n in P(2) and q(2) may

be eliminated in favor of derivatives of the flow velocity u by

using the integrated continuity equation (nu = constant).

Th rsutsfo P(2) (2)
The results for P and q , when substituted into the

general conservation equations (11-6) and (11-7) yield a pair of
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coupled, nonlinear second-order differential equations for the

velocity and temperature within a normal shock wave in a Maxwell

gas.

Determination of P(3) and q

The third order calculation to determine p (3) and q(
3)

follows the same pattern as employed in the previous order. For

third-order, (11-26) and(l1-27) give

1

fv ' fdE2 jF (X) f () ()f(0) (v) [
1

_f dvlfdQ2K2 F(x)f( 0 )f O) (1)' (2)' + (2)' (i)'

-(l)q (2 ) A(2) (1)]+ D3 (f(O) (2) + D3t(r(O)4.(l))
1 - 1~l Dt D +

D3f  (0)
Dt +Vz (f( 0 ) (2 )) . (1I-60)

Multiplying (11-60) throuF.lout by mV2 and integrating over
z

-~ (3)
all v, the intermediate result ,or P is obtained as

3 71A2 2(3) D3 (2) (1)
-_ -n D + p

7 3u (2) +8 Dr. )
+ Tz P  3 -L

2kT3 / 2  
2a m -c (2) 0

d T (C) (11-61)

5 z1nm _3/2 0
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with rspect (2)The moment of T03(c with respect to () may be determined

(2)
from the integral equation (11-50) for (2), without solving

explicitly for (2), in much the same way as the moment of T02()

with respect to (2) (c P (2)) was determined.

Starting from the identity (see Appendix A)

21 1c

7T-3 / 2 dce 1 fdF(X)A [ 0 3 (c ':03 ["03( (1-62)

9 2
with £03 = -

this implies

2kT 3/2

fdcec ( ) =Tr3/2 ()03

IJ 1/2

( 0 ) ( 2 ) f fd , 1/2F(X) 12T 3/2 03(c)]
dv I f 1fOfOM F m03(

(11-63)

Now multiply (11-50) by T03(c), integrate over all v, and use the

H-Theorem transformations on the collision integrals. Proceeding as

in the preceding section leads to an alternative form for the right-

hand side of (11-63) or, expressed otherwise, a trap for the moment

of T 03(e) with respect to ((2)

2kT 3/2 2

m3/2 fd-c-e (2) T 0(,C)

m 11 /(1 D u

5 2K 4 P')) 1- + . (11-64)
2mn 'iA2  n Dt 5 mn 3z 5 n z

Using (11-64) in (11-61) and performing the necessary differ-

entiations, P (3)is found to be
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m z az2] .- z

64 [1 an~ au [1a 2 au

z [ 3 z2

47 [LaT a2 u+2 ; 3 +L6a3 (11-65)
t T J T + 27 13d

In obtaining the above result for P substantial deriva-

tives of the lower order P ()and q ()in (11-61) were determined

using the identities

D "IF] = a [DF 1 u IuF (I-66a)
D t IaozJ 3z Dt] j z az

and

D 32 ] D2 DF a2u aF au D2F
Dt a Dt a 2 3z az 2

21az3z

(3)
The third-order contribution to the heat flux, q(3 is

1 2
obtained by multiplying (11-60) throughout by rV V and integrating

-* (3)
that result over all v. The intermediate form for q turns out to

be

- __~3 [q(2) + (1)]+ (2

11nq =- q +

5 D 3 u (1) DJ2 u 1+2 nkT Dt + --D

+ kT P(2 + 6 (2)
3z 2 m 5 q az
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S2k T 1/2  2)4z n5' 7r- -3/2 Sdee2T 03

5 nk2 2 fu c (2)

+ 3n2 1 +dC2(2) 20(') -12(c)1 (11-67)
+ 3 nm Tr3/2

Although the P(3) calculations have already provided the result for

the second-order moment of 03 (c), the additional second-order moments

of the eigenfunctions T 20 (c) and T 1 2 (c) must still be evaluated.

However, methods used to evaluate the T03(c) result may be used to

evaluate the additional moments occurring in (11-67). The calcula-

tions of the second moments of T 20 (c) and T 1 2 (c) give

3 P [m Tr 312/ 2 [ ( ) -[212

3/2 ~ m r1 1 /2  D

-z '28 2 TA2  5mn Dt q
Z m n

+ 36 kT ( )  102 k Df (1)
2+ 2

mn mn

72 kT Du (i) k DIT l)] T2+3 P  + 6 2l, Dt1 P~ (11-68)

7 mn mn Dt

Performing the derivatives and eliminating derivatives of n

in favor of derivatives of u yields

8 7 3 416

1451 2T 917[l u 2

216 IT z _3a2 8 3 L3

- -I

p z
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265 lT I [1u 701

7 [16 and 1 -7 a 24i T 1u n2
ord 7 f ia] eqution [ 16 g r tu ia l

16 UZJ 2)kTT 2 1 1u11T rz

949 au ['u 1 ii

The substitution of the viscous stress an(.. heat flux

contributions through third-order into the general conservation equa-

tions (11-6) and (11-7) yields a pair of coupled, nonlinear third-

order differential equations which govern the spatial dependence of

the velocity and temperature in a normal shock wave. The third-

order results are known as the Super-Burnett differential equations

for the structure of a normal shock wave in a Maxwell gas.

Determination of P( 4 ) and q( 4 )

The fourth-order contributions of the viscous stress and heat

flux are found by applying the same moment methods to the integral

equation for q(4) obtained from (11-26) and 11-27)

- f d (2K'' FX f (O)f (O) L [ ( )' 3'() 3 1
Vl ~ rn 1 ~ 1 [jl ~+Sl~ f 2K /F(~ (0) f(O) [+(3)' '(1)',.q (3)'+ (1)' _ (3) (1)

+ d M F ( 2)+f (+ V (3

L

v
i n/2
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The moments with respect to mVz and 
2  V Vz yield the

following intermediate results for P(4 ) and q(4) respectively:

3 r7 9 1 / 2 n P(4) 8 35(3)
2~1A~- nP 15 az

+D4 [ (3) (2) (I + p(3) __u

Dt I P +P + 3 z

+-- un /2k 2 3/2 2 , -- c 2 (3)03') ;41171

N 2 (4) D 4 (3) (2) (1)
S

n q  - q +q +q

D Du Du
+ Ip (3) D2u (2) + D3u p() +D4u[ nkT

Dt,

+ 16 au (3) 7 a 31 03(3

2~2

+ 4 -nkT it dcei T (
az ~5 7T3/2 03

+ T k2Tn -- 1 fd-c' c T /21 [(,) - 126I\ (11-72)+ h 3/2 - 212

The evaluation of the third-order moments of T 03('), T20 (,C),

and 12(c) proceeds as in the previous sections. The calculations

of the nonlinear expressions for P (4) and q(4) were carried out to

the point where the results were known in terms of substantial

derivatives, spatial derivatives and the lower order viscous stress

and heat flux contributions. For reasons which will become apparent

in the next chapter, it was not necessary to perform all the
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differentiations and substitutions to reduce these very involved

expressions to the spatial derivative formats as was done in the

previous developments. In fact, only the terms in P(4) and q(4)

which are proportional to the fourth-order spatial derivatives

4 4 4
~n 3 uT

4 or 4 will be needed later in this report. Neglectingz 4 'z 4 ' z 4

all other terms leads to the linearized results

(4) k2T2 4n+ 197 k2T 4T=3 3 2 4 42 2 41-3
p nm azm 3z4

and

q = 8335 4 u (11-74)
336 24pp az4

If the complete nonlinear results for P (4) and q(4) were

included with the lower order viscous stress and heat flux contri-

butions, the general conservation equations (11-6) and (11-7) would

yield two coupled, nonlinear fourth-order differential equations

for the temperature and velocity in a normal shock wave. These

fourth-order results are known as the Super-Super-Burnett equations.



CHAPTER III

METHODS TO SOLVE THE NAVIER-STOKES EQUATIONS

Numerical Integration

It is convenient to rearrange the general conservation

equations (II-5a), (II-6a), and (II-7a) in two ways. First, use the

continuity equation (II-5a) to eliminate p in favor of u in the

momentum and energy equations; then, use the momentum equation to

eliminate P from the energy equation. These rearrangements give

5 32(Ui)2 + (Ul) 0(

3 0i uia ~[q] + (T-l) - Mi +-1)

and

2
5M2 U1 5 2

[ 2 [ + - MiU(u-l) + (T-u) = 0, (111-2)

where the dimensionless velocity (u) and the dimensionless temper-

ature (T) are defined by

u--- - , (i11-a)
ui

and

T T ' (111-4)

T m • u m n m w mumu ~ u m m m ,um ~ m m m m m m ~ m
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with i = 1 corresponding to conditions far upstream and i = 2

corresponding to conditions far downstream. The quantity M. is
1

the Mach number,

M. =- (111-5)
1 a.

in which ai is the speed of sound determined from

a2 k T (111-6)

In the Navier-Stokes order of fluid mechanics, the

expressions for P and q are

4 - 0 du (111-7)

and

q(1) KdT (III-P)
qq dz

For Maxweli molecules, p and K are given by

1(T) i = iT (111-9)

and

K (T) = (k1i-10)
4 m

In due course, following the convention of other authors,

distance in the direction of the mean flow will be measured in

multiples of the upstream Maxwellian mean free path A1, defined by

16

3 = 1/2  (111-11)

[3i I / a
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Anticipating the eventual introduction of Xi, the Navier-Stokes

equations for a Maxwell gas may be written in the form

20 [ i iJU T d = 5 M2iu(u_l) + (T-U), (111-12)

15_'lT drI 3 'T) 5 2 2 (1-3
ViiPi_ M 2T dzT= 32 "T-1) _ 65 Mi (U-l) + (U-1) . (111-13)

Liai M2 z 2

Gilbarg and Paolucci provided an extensive analysis of the

solution of (111-12) and (111-13). Everything depends on the mathe-

matical nature of the singular points of (111-12) Lnd (111-13) in the

auxilliary U-T phase plar.e. The physically significant solution of

(111-12) and (111-13) may be represented by a trajectory which con-

nects these two points. Such a solution exists and may be obtained

by numerical integration, but the numerical integration must be

initiated near the downstream singularity and proceed upstream.

Numerical integration from upstream toward downstream will nece-

sarily fail.

This requirement for successful numerical integration may

be understood by examining all the mathematical solutions including

the nonphysical ones very near the singular points. To accomplish

this, linearize rhe Navier-Ftokes equations, and put

K.Z
1T- T. + e(111-14)

KiZ
u U u. + ue , (111-15)

or
K z

I[= + T e ,(111-16)
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KiZ

+ (1II-17)

The characteristic or secular equation for Ki may be written in

the form

20 L 2 + (9-23M 2) Li + 6 M 2 (M2_1) 0 , (111-18)

where

[ii]

L Ji (111-19)

The roots of this characteristic polynomial are given

graphically in Appendix B along with a table of the physically signi-

ficant roots used in the subsequent calculations of the gas property

profiles. An examination of the characteristic roots shows for all

Mach numbers that upstream, both roots are real and both are positive,

whereas downstream the roots are real but of opposite sign. There-

fore, near the upstream singularity, the most general solution of

the linearized Navier-Stokes equations involves a linear combination

of exponentials with the two positive values of K These exponen-

tials tend to zero as z-* - -, giving u-*u1 and T-T . However, near

the downstream singularity, the twovaluesof K2 have opposite sign

and the most general solution diverges as z4 + . There is only

one trajectory for which u-*u 2 and T- T2 as z-* + o.

Thus, it is the signs of the roots of the characteristic

equation (111-18) that determine whether the Navier-Stokes equations

are amenable to numerical integration, and, if so, in which direc-

tion through the shock wave. The means used to attain this insight
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are extremely important, for they illuminate difficulties encoun-

tered later in attempting numerically to integrate the higher order

gasdynamic equations.

The results of numerical integration of the Navier-Stokes

equations will be discussed later in this report in Chapter V.

Perturbation Expansion

It will be seen shortly, that some difficulties arise when

numerical integration is attempted in the higher order gasdynamic

equations. Thus, at this point in the thesis, it is convenient to

introduce the development of a perturbation expansion method which

can be used to integrate the higher order equations where the

numerical integration fails. It is appropriate to discuss the

development of the perturbation expansion now, in conjunction with

the Navier-Stokes equations for it will be assumed that such a

method will be trustworthy if it gives good agraement with the

results of numerical integration of the Navier-Stokes equations.

A successful perturbation expansion presumably must be based

on a dimensionless parameter that is always less than of order unity

(even for M >>I). In addition, the perturbation expansion should

not lead to approximate results that violate the Rankine-Hugoniot

relations (which connect upstream and downstream values). Finally,

the perturbation expansion must somehow do justice to the enormous

variation in shock wave thickness between the extremes of MI=l

and M >>I.
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In consideration of the above, the choice of the expansion parameter

2is E M2 - 1, and, from this definition, it is noted that C varies

monotonically from 0 to -0.8 as M increases from 1 to o.

In order to avoid violations of the Rankine-Hugoniot relations

induced by the perturbation expansion, a normalized density R and
p

notmalized temperature R are regarded as basic dependent variables,
T

where

P(z)-P l

RP (z) = P- 1 (111-21)

R (z) = T(z)-T (111-22)
T T2-T1

These normalized quantities may be expected to vary from 0 to 1,

independent of M Since the boundary conditions which these vari-

ables must satisfy are independent of M1 , it is unlikely that approx-

imations to R and RT will fail to have the correct asymptotic

values. From (111-21) and (111-22) and the Rankine-Hugoniot rela-

tions it follows that

__ uI  3(M2+I)

. . . 1 __ R (z) , (111-23)
P1  u (M2+3)

T + (5M2+3)
T + 2 R (z) (111-24)

16

Note for future reference that one could have introduced a

normalized density R and normalized temperature R defined by
P T
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P -P(z)

Rp) W P2-Pl - Rp , (111-25)

T2 -T(z)
RT T2 T 1  RT(z) , (111-26)

in terms of which

S u2 3(M22- I )

p 2 1+ M2 R (z) , (111-27)

P2 U (M 2+3)

2_ 2T (M 2-I) (5M 2+ 3 )

T- i +M 5 2 + RT(..z). (111-28)
T 2 16 M 2  T

2

The pronounced dependence of shock wave thickness on Mach

number suggests the introduction of a Mach number dependent length

scale to "tame" the differential equations. The idea is to regard

R and RT as functions of

C K(M).z (111-29)

with K(M) chosen so that the thickness of the shock wave (in units

of r) does not show a pronounced dependence on Mach number.

How does this lead to a choice for K(M)? It is known that
KlZ

far upstream R and RT are proportional to e , with the physically

significant choice for K (positive, tending to zero as MI-*),

K1  iM (23M9 (23 - 480p~1 ~ 2 - 192M(i-) (111I-30)

Far downstream, however, R and RT are proportional to e , with

the physically significant choice for K2 (negative, tending to zero

as MI-I)
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2 P2 a2 40 (23 M2 _9) (23 M9)2-480 M2(M2_1) 112 (111-31)2 2 M 2 40 2222

For M-1, the two reciprocal length scales (111-30) and (111-31) are

both proportional to (M -), but for M>>l, KI-M I and K2 1

Now, it will be shown that in the interior of the shock wave,

for M >>l , K- -. To do this, start from the full nonlinear Navier-
1 '

Stokes equations,

20 iMi UT du 5 M2 U(U-l) + (T-U), (111-32)

T__-_ 2 dT 3 5 - 2 N-l) 2 + (u-), (111-33)

set i = 1 and think of U and T expressed in terms of R and RT.

Next, assume the existence of an "interior" of the shock wave where

R and RT are both of order 0.5. It then follows from (111-32) and

(111-33) that within such a region, for MI>>I ,

dRp 1

dz M

dRT 1

dz M

In other words, K---I in the interior of the shock wave for M >>l.

Hence, relying on the foregoing analysis, the Mach number

dependent length scale for the perturbation expansion will be based

on (111-31). This choice may be expected to be appropriate through-

out the shock wave for M 4I, and everywhere except far upstream

for M >>l. Its actual utility can only be judged a posteriori.
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Based on the above developments, the perturbation expansion

can now proceed by rewriting (111-32) and (111-33) for i = 2 in

terms of R , RT, and C, defined by K2 (M ).z and then seek

R and R in successive approximation by writing

R (i) = R' 0 " (P ) + ER Ip () +C2Rm (R ) + ..... (111-34)

RT() RT (?) + (RTi() W + 2RT ( ) + ..... . (111-35)

Since K, is brought into the differential equations (111-32) and

(111-33) when they are written in terms of E, the c expansion for

l 2M2
P2a2 K2 will be needed and is given by

3 9 2 369 3 13509 4 1
(111-36)

P2 a 2  2 7 2(7) 3  4(7) 5  8(7)

In zeroth-order (111-32) and(11l-33) are satisfied identi-

cally. In first-order, both (111-32) and 111-33) yield the same

relationship

R(0) (C) = R(0)(0).
PT

In second-order (111-32) and (111-33) yield, respectively,

1 R(i) 1 R (1) -9 R (0) 3 R(0)
2 T 2 P 8 p 16 T

(0) (0) 2 dR ( 0 )

+-R R R + RP~ +~'--0 (111-38)
8 P T 16 + p d

and

1 R(i) -1 R(1 + 1 R (0) 3 R(0)
2R -V p 8 p 16--6R

ST 2 dR ( 0 )

+- R ( 0) (0)  11 R(O) 15 = 0.(111-39)
4 p RN 1 p8 drC

"TFor clarity, the argument will be dropped throughout
the remainder of this report.
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Using (111-37) to express RTO) in terms of the last

(()two equations may be looked upon as involving RT1 P(i an

R () The difference between (111-38) and(III-39) is a first-p•

order differential equatio for R(0 # in the form
P

___ (0) 2
d = R( 0 ) -R 0 )  

(111-40)

Forming the sum of (111-38) and (111-39), the derivative of

R(O) may be eliminated using (111-40) to give an algebraic equation
P

for RT as

()= R()O R (111-41)T p 8(7) p -8(7) R . (I1-4

For convenience in calculating the asymmetry of the normal-

ized density profiles, the origin of the coordinate system is taken

where R(O)() = 0.5. With this specification, the integration ofP

the second-order result gives

(0 ) = [l + Tanh (111-42)

and from (111-37)

R(0)(I) = 11 + Tanh. (111-43)
T 2f +an[)

Equation (111-41) will yield immediate results for R(1 ) once R(1 )

T P

has been determined from the succeeding perturbation calculations.

The third-order expressions obtained from (111-32) and

(111-33) introduce the next higher order of the perturbation

quantities. The results are



1 R(2) _-1 R (2 ) - 1R~') + 9 R (0 ) 3 (1)
pT -p p 32 P T6 R)

(0 ) " 45(0) (0) "27 r(0)' 2
1  - R - R + R (R (0) +- I RP ] (8 P T 64 P T 8 P T 32 p v

+ 1 - 3 (027 3 (0)
8 p p 32 p J " T6R

45 R0 (0) 15)(59) d 0) dT(1)

0 3 dR 275 dR dR

+ 5 R =-- - R 61k +R(0)

14 T dC 4 (7) 3 dC 7 d 0(111-44)

and

1T(2) (2) 3 (1) () ()

8 2 p 6) T 73

645 (0) dR + d6"( -4745R(7 ) T + 15(159) T 15 T 0. (111-45)
87 P C 32(7) 3 d 28 d

Eliminating R()and RMby means of (111-37) and (111-41),

and taking the difference between (111-44) and (111-45), one finds

IR_+ 2 (O)3~ 11 (0) =6L 13
2 R 61 2 1 RJO 2[ R]

pp 4(7) p 47)

(2) (111-46)
An expression for RTis found using (111-46) in the sum

of (111-44) and (111-45). The result is

8 2)R(7) j 6()- 1-2 R (0)l R (1) - 1931 RO

T __ r 1(7 + I(1164-473

27037 i 0 2 28968 [()
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Proceeding as before, the fourth-order perturbation

calculations give

d(2)

d +[2 R(0 ) - (jR2) -2 R (0] RM1<

61 R(0)] 21 (1 2 202032
F4(7) ] ] 16(7) 4 L

+347944 (0)] 3 145914 (~0 ) (418
16(7)4 [R P 16(7)4 R (11-48)

and

R(3) (3) 67 R ()RT p 8(7) IP

1931 (1) _ 67 R(l)  2 2 7

- 8(77-2 2J p

647) P 8() P [ L6 (7 ) P P

+3r28968 1i (0)~] (1) -727457 (~0 ) 2343485[Rl2

.,' ~ ~~+ 3474] -.._7 j1 R 2 R(), -[45 _- [ R l 3R(0)

[64 (7) 3J I 512(7)5 RP 512(7) 5L

+ 109226 [ (Oj 3 - 1257829 [R(O] 4 ~ (111-49)

In fifth-order, the results are

( + 12 R (0)-1} R (3

60± (0) (2) (0)] 2 (2) + '1U.()] 2
2 1, R R' -3 R 61 R u-

7) (7)L 4(7)2 P

<2

-3 rL3 )2I R~0 [ R11 2 2 R P R2 - 2 L6202031 R 0 R (1

+34794 (0)] 2 ()4451 R0]R(1 )
16(7) 4 L P - 167 R
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7 o2 (0] [ )] 3
12 (0)1 + 3526570R

128(7) 6 i P128(7) 
6

13336026 [R(Oj + 7838226 [RO~ (111-50)
128(7) 6  128(7)6 p

and

R R 1 -2 R R 1

T 8(7) P R 64(7)3 p

2 2707 RL) 2 + 3 289681 -()2R 2 727457 Rl

164(7 )64(7 ) 3j PP 512(7)~ 5

+ 2 23434851 R(0) R<) +3 [10962264 [ 1] 2 .,,
+ 512(7) 5j p P 512(7)5] p

-125782921r (0)1.: [3 1 (2) 27 () 2

4. 512( [J R(O] R~l - 2 [ 67 R~ 733 )

+ 3,28968 ] [,<0 'l 2 + 257219941 R60 1 [R 0
[6(7) R 0  2 1 4096(7) 4096(7)2

604826712[ R 1  
-5690706300 R2O) ]4 + 5974300368 [ R~~

4096(7) 7  J 4096(7) 7  1 4096(7) 7 L J
(111-51)

There is a pattern in the preceding calculations, although it

will probably have escaped the reader's attention. As is pointed

out in Appendix C, not all of the numerical coefficients in the

differential equations for R are independent, nor are all the
P

coefficients in the algebraic results for R independent. The
T

pattern involves a limited number of numerical coefficients denoted

by A
n
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Moreover, as also pointed out in Appendix C, there is a

conveniently economical way to determine the R as functionals
P

of (1- R"O)). One finds

(0 )  (00 -(0(

+ B3 [l-Ri]£ I l-RI Q1n I-: )

+ R Rp-A]  n R + (111-52

R(2)= R(0 ) B-R,) l -R(01 + B n [-R (
P iPP' 2 1 Pt

+ B3 [l-R 0)] Z'n [I-R 0)] + 4 n2 I-R2)]+ B2 [[R1- 2, 0] +0R B 1R(l k! lR + Zn
Pt PJ C1 ~ 2

+ C~ 01-R 01 Zn [1-R(1 + el2 [1R]2 l3)
+ 5 1 Zf2lP() + P 6 n [ipi) + c7'~ ~

+(3) (RO) ] -Rn( lR()] + 9 [ (0) n a()

+ C10  l-R(i n3 [l-R()] + C 1 Llkn 2 1-RlR() +0

(111-54)

In (111-53) and (III-54), the coefficients B and C are
n n

functions of the generalized coefficients A and the integration
n

constants Q. The expressions for the Bn and Cn trso h

A are also given in Appendix C. Once R (0 ) has been determined
n P

for each value of via (111-42), the corresponding perturbed
quantities R and R ) for j = 1, 2, 3 may be evaluated to

~determine the individual contributions to the normalized density

and temperature for each of the above orders of the perturbation

5 -
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development. The density and temperature profiles depend on

the Mach number through the RP, RT, and K expansions in terms of

the Mach number parameter e.

The discussion of the Navier-Stokes perturbation results

and comparison with Runge-Kutta numerical integration results is

deferred until Chapter V.



CHAPTER IV

METHODS TO SOLVE THE HIGHER ORDER

GASDYNAMIC EQUATIONS

Numerical Integration of the Higher
Order Equations

As indicated earlier in this report serious ditticulties

arise when attempts are made numerically to integrate the Burnett,

Super-Burnett, or Super-Super-Burnett equations. The nature of

the difficulties may be understood from an analysis of the singular

points of the differential equations using the linearized equations,

just as in the preceding chapter. Following the Navier-Stokes

development, the variations of the normalized flow velocity and

normalized temperature from their Rankine-Hugoniot values are
Kz

assumed to be proportional to e far upstrean and far downstream.

The coupled pairs of linear differential equations then yield char-

acteristic polynomials for the Ki .

The (linearized) Burnett equations yield a fourth degree

characteristic polynomial,

70 180 + 291 M L
ii i

+ 81-207 M ] M2 Li + 54 Mi4M 2] 0, (IV-l)

in which

i MiL=Pii i (IV-2)

g -- K
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The roots of (IV-l) are presented graphically as a function of

M 1 in Appendix B.

The upstream roots indicate that numerical integration is

feasible starting downstream, as in the Navier-Stokes case, provided

M <1.89. For M between 1.0 and approximately 1.4, the roots of

the upstream characteristic polynomial are real and positive or are

complex conjugates with positive real parts. The solutions of the

linearized equations are thus damped or oscillatory and damped, and

the upstream Rankine-Hugoniot asymptotic values are attained for all

solutions as z -- -. For values of M between approximately 1.4

and approximately 1.9, all roots are complex with positive real

parts. All solutions thus exhibit a somewhat stronger oscillatory

behavior far upstream for M between approximately 1.4 and approxi-

mately 1.9, but remain damped as z-- -. Above M1 = 1.9, the real

part of one pair of conjugate roots changes sign, and there is a

manifold of undamped solutions which precludes numerical integration

starting downstream.

The roots of the downstream Burnett charicteristic polynomial

preclude numerical integration starting upstream for all MI.

Therefore, numerical integration proceeding in the upstream direc-

tion is the only feasible choice. However, the integration may be

expected to be successful for only the range of Mach numbers indi-

cated above, and experience confirms this expectation.

The (linearized) Super-Burnett equations yield a sixth

degree characteristic polynomial,
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6 5 2 47850 L. + 29160 L. 28980 M L

[ 4_52 2] 342
+ [20475 M _ 5427 Mi L' - 36(291) M4 L

+ [36(207) M~ 6- 36(81) M 4} L1

- 54(36) M6 [Mi  2 = 0 (IV-3)

with Li defined as before.

The results for the upstream and downstream roots as func-

tions of M1 are given in Appendix B. This graphical presentation

shows that some of the real root8 and some of the real parts of

the complex roots have opposite sign, both upstream and downstream,

for all Mach numbers. Under these circumstances there is no reason

to expect numerical integration to succeed proceeding in either

direction for any Mach number, and experience confirms this exDec-

tation

The results of the linearization of the Super-Super-

Burnett equations are qualitatively the same as those found for

the Super-Burnett equations. The K i are determined from the

following characteristic polynomial:

8 206)52)7
328399(625) Li - 200(63)(521) Li

6300(3791) M
2  6 2 5bLi- 40(81) (49) (59) Mi Li

+ 350(27) (2287) M 4 L- 54(49) M4 2275 M - 6031 L3

+ 8(49)(81)(97) M6 L Mi M - 9 L.

+ 16(49)(729) M8 [M - ]0. (IV-4)
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The graphical representation of the roots of this characteristic

polynomial, given in Appendix B, reveals that some of the real

roots and some of the real parts of the complex roots again have

opposite sign, both upstream and downstream, for every Mach number.

Since the conventional numerical methods fail when applied

to the higher order equations, the remainder of this chapter is

devoted to the perturbation method developed in the previous chapter.

Perturbation Expansion Applied to the
Burnett Equations

The burnett equations containing P(1) + P (2) and q(l) +

q (2), may be analyzed in the same way as the Navier-Stokes equations

to determine a suitable Mach number dependent length scale. The

results of such an analysis are qualitatively the same as for the

Navier-Stokes case, and thus suggest a perturbation expansion which

incorporates the Burnett result for the physically significant

K2 (negative, tending to zero as MI *). The expansion of

__2M2 K 2 i oeso 2
2  2  i rs of c 2 _ I follows from the characteristic

02 a 2 '2-Fw

polynomial (IV-l).

2a 2 r 3 102 2 4194 3 + 291234 C4 (IV-5)
K2 ? =3 --- -5 7 ..... .(V5

2 M 7 2(7) 3  4(7) 8(7)

Since the first term in (IV-5) is the same as the first

term in the Navier-Stokes K2 expansion (111-36), the Burnett calcu-

lations do not effect an, changes to the Navier-Stokes perturbation
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results through second order in 6, although of course the numerical

values of K are different.

Following the same procedures used for the Navier-Stokes

equations, the Burnett calculations in third order yield

_ + R(O)-I R( I ) - 87 +) 2 80)

4R- R (IV-6)

and

R () (2 + 67 1- R (0) RM' 4811 RO
T = P +8(7) 1l~ - 47 3 P

18397 2 + 230 R 0)] 3 (IV-7)

64(7) 3  64(7) 3

Referring to equations (111-46) and (111-47), it can be seen that

the third-order perturbation results for the Navier-Stokes equations

and the Burnett equations are of the same form; only the values of

the corresponding coefficients have changed.

The fourth-order Burnett calculations yield

P-+ 2 R(° ) - 1 R( 2 )  -2 [ ] R(0 ) R~')
d P P - P P

+(0)2][Ro 2 (1l) (R1] 2 5619 [R (0] 2

+1628 (0)] 3 70635 [R(0)l (IV-8)16(7) 4  p16(7) 4 LP

and



59

(3) (3) + 67 [1-2 R(0)l R(2) 4811 (1)
RT RP 8(7) 1 P 64(7) 3  p

3 1371 (0) (1) r 3208 [ (0) 2R )64(7)J p3 64(713J 2 R~l)

- 8(7) [ R I )  1878497 R(0) + 21661565 28() P512(7) 5 p 512(7) 51 p

28921 R0 8411148
512(7) 5  ( + 512(7) 5  (IV-9)

Again, the form of the Burnett results is the same as those found in

fourth order for Navier-Stokes, except that the numerical coeffi-

cients are different.

The fact that the perturbation equations have the same form

for the Burnett equations as the Navier-Stokes equations applies

also to the Super-Burnett equations and the Super-Super-Burnett

equations. This "pattern" is what gives general utility to the

material in Appendix C concerning integration of th( perturbation

equations.

The fifth-order Burnett results are

--P- + 2R i - 2 R

+ 3 L ( 2 4 ( 7 )22) 2 + 3[487 R() 2 (0)

-2 R(2 )R ( I ) -2[561931] R(0 )R ( I )

p P 116(7)4
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r12 682 8] [ "(0)1 2 (1)3 ["(0)3 (1+ 3 1 43 R R -4 703 RP0  P
L16(7) L 16(7)4 F,

r0 2 r0
39762,438 + 218183394 R,<o 1,
128(7) 

6  p 128(7) 6  p

. .324539190[,0  4 + 146118234 (0) (IV0)
128(7)6 [ P 128(7)6

and

R4) R(4) + 67 1-2 R(0) R ( 3 )  4811 R(2)
T P 8( 1-2 P )P 64(7) 3 P

j 20 (137 R 0 R 2 ) + 232 08 R (0] R (2)
64 (7)3] 16( 7)3J R (

1878497 R() + 2 2166156 R(O)R(1)

512(7)5 p 1512(7)5 J P P

3 28194216] [(O) 2 R~l) + 4[ 8411148] CR.H 3R. . . 2 3 _
1512(7)5 512 (7)5

-2 [ 67 )RM 1 R (2 ) 18397 IRM 2

+ 3 [2320831 R (1)1 R(0 ) + 277563301 R (0)
164(7)3j I 2 4096(7)7 P

+ 11550194783[ R(0)l 2 -66307987032 [aOl 3

4096( 7)7 P J 4096(7) 7 R I

+ 94921844 4044 l6  l R).5 (Tv-li)

4096(7 4096(7) 7  P

Discussion of the solutions to the perturbation equations

is deferred until Chapter V.
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Perturbation Expansion Applied to the
Super-Burnett Equations and the
Super-Super-Burnett Equations

The Super-Burnett equations, containing P(1) + P(2) + P

(1) (2) (3), odrnn
and q + q + q, constitute two coupled third-order non-

linear differential equations for the velocity (or density) and

temperature. The equations provide a rationale for a perturbation

expansion which incorporates the Super-Burnett result for the

physically significant K2 (negative, tending to zero as M, 
) ,

just as the Navier-Stokes and Burnett equations provide such a

rationale. The expansion for K2 in powers of 2 - 1
22

follows from the characteristic polynomial (IV-4),

K 2a2[1 + 102 2 _ 14190 3 _ 1123053 4 +
K2 =0 2M2 L7 2(7) 3  4(7)5 8(7)7 .... (IV-12)

Since the first two terms of (IV-12) are the same as the corres-

ponding Iwo terms in the Burnett K2 expansion, the Super-Burnett

calculations do not change the Burnett perturbation results throlgh

third order in c, except of course through the numerical value of

K 2 .

In fourth and fifth orders in c, the calculations yield

equations for the normalized density and temperature which are of

the same form as the perturbation equations derived in the Navier-

Stokes and Burnett perturbation work. The generalized equations

and the coefficients appropriate to Super-Burnett are given in

Appendix C.
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The length scale expansion for the Super-Super-Burnett

equations is

=2ar 3 102 2 14190 3 1058952 4 1K2 =  L - - 5 + 7 .. I-3

2 2 M 2  7 2(7) 3  4(7)5  8(7) 7

It is clear from this form for K2 that the Super-Super-Burnett

calculations do not change the Super-Burnett results through fourth

order in c. In fifth order, the results are of the same form as the

fifth-order results for Navier-Stokes, Burnett, and Super-Burnett.

The Super-Super-Burnett coefficients are also given in Appendix C.

The solutions of the perturbation equations derived in

this section for Lae normalized density and temperature profiles

will be discussed in the next chapter.

As a concluding remark on the work required in the pertur-

bation development, the determination of the eighty-four coeffi-

cients needed through fifth order in c was a major effort. The

pattern, which ultimately evolved, was not obvious or confirmed

until the Super-Burnett development was completed.

The intuitive expectation that the R (j ) and R j )

P T

(j = 1,2,3, .... ) should vanish when R(0) = 1, in order to satisfyP

the Rankine-Hugoniot relations, piovided a convenient mechanism

for checking the coefficients of the powers of R (0 ) in each per-
P

turbation equation. That is, the sum of the coefficients of the

powers of R(0 ) had to vanish for each perturbation equation in
P

order to satisfy the Rankine-Hugoniot conditions far upstream.

Although this was a convenient check on the calculations, the
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mechanism was not foolproof. It turns out that within the arith-

metic processes of substitution, expansion and collecting terms,

it is possible to carry through a mathematical error, undetected;

yet, with a result that satisfies the vanishing of this coefficient

sum. The calculations are lengthy and require meticulous attention

to preclude introducing such casual errors. Errors of this sort

may go undetected except by separate and independent checks of the

calculations.

In the present work, alternate approaches were employed to

determine firm values of the coefficient sets A2 through A4, A5
through A8P A through A12' A13 through A16, and AI7 through A21

as these are the coefficient sets of the powers of R (0 ) in eachP

of the gasdynamic developments.

The final values for the coefficients in each of the sets

are based on the fact that the same results were obtained from at

least two independent calculations for each order of c of the

perturbation expansion in each of the gasdynamic developments.
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CHAPTER V

SHOCK WAVE PROFILES BASED ON THE METHODS OF

NUMERICAL INTEGRATION AND

PERTURBATION EXPANSION

Results for the Navier-Stokes Equations and

the Burnett Equations Based on the
Method of Numerical Integration

An increment size of 0.05 upstream Maxwell mean free paths

was chosen for the'fourth-order Runge-Kutta numerical integration.

Smaller increment 'sizes gave the same results for normalized density

and temperature everywhere within the shock wave (through six

decimal places). The linearLzed Navier-Stokes equations and the

linearized Burnett equations were used to determine the initial

values for the numerical integration, starting from the assigned

value downstream

S1 =-0.001

Figures 3 through 6 exhibit the normalized density profiles

and normalized temperature profiles for MI = 1.5 and M = 2.0.

Additional results for the Navier-Stokes normalized density profile

at higher Mach numbers are given in the next section. The Navier-

Stokes equations were integrated numerically by other authors many
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Figure 3 - Gas density profiles in a normal shock wave (MI = 1.5)
based on the numerical integration of the Navier-Stokes
and Burnett gasdynamic differential equations.

Navier-Stokes normalized density

Burnett normalized density
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Figure 4 - Gas density profiles in a normal shock wave (M1  2.0)
based on the numerical integration of the Navier-Stokes
and Burnett gasdynamic differential equations.

Navier-Stokes normalized density

- -- Burnett normalized density
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Figure 5- Gas temperature profiles in a normal shock wave (M= 1.5)
based on the numerical integration of the Navier-Slokes
and Burnett gasdynamic differential equations.

Navier-Stokes normalized temperature

Burnett normalized temperature
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/

Figure 6 - Gas temperature profiles in a normal shock wave (M =2.0)

based on the numerical integration of the Navier-Siokes
and Burnett gasdynamic differential equations.

Navier-Stokes normalized temperature

_ Burnett normalized temperature
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years ago, but (as mentioned in Chapter I) the Burnett equations

have not been integrated numerically before.

Figure 7 shows the Mach number dependence of the distance

from the center of the normalized temperature profile to the center

of the normalized density profile (the former is always upstream

relative to the latter).

As Figures 3 through 7 indicate, there are definite differ-

ences between the Navier-Stokes shock structure and the Burnett

shock structure, even for Ml<2 ; the difference in Mach number

dependence of the separation of the profiles is particularly

conspicuous. The differences in the profiles themselves are accen-

tuated in plots of the asymmetry quotients (introduced in Chapter I)

as functions of Mach number, as shown in Figure 8 and Figure 9.

The results of this section suggest that the attention if

experimentalists should be directed toward asymmetry quotients for

tempecature profiles as well as density profiles, and toward the

separation of the profiles.

Results for the Navier-Stokes Density Profile
Based on the Methods of Numerical

Integration and Perturbation
Expansion

The success of the perturbation method, as applied to the

Navier-Stokes density profile, may be judged from the comparisons

in Figures 10 through 13. It is clear from the figures that the
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Figure 7 - Mach number (M1) dependence of the temperature-density
separation in a normal shock wave based on the numerical
integration of the Navier-Stokes and Burnett gasdynamic
differential equations.
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Figure 8 Density asymmetry quotient (0 )versus M based on the
numerical integration of the Navier-StoKes and Burnett
ga,,dynamic differential equations.

Navier-Stokes numerical integration

Burnett numerical integration
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Figure 10 - Navier-Stokes density profiles in a normal shock wave
(M1 = 1.5). A comparison of density profiles based on
the methods of numerical integration and perturbation
expansion.

Numerical integration

........ Zeroth order perturbation

First order perturbation

Second order perturbation

Third order perturbation

The third order perturbation profile is indiscernible
from the numerical integration profile within the scale
of the figure.
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Figure 11 - Navier-Stokes density profiles in a normal shock Twave
(M1 = 2.0). A comparison of density profiles based on

the methods of numerical integration and perturbation

expansion.

Numerical integration

........... Zeroth order perturbation

First order perturbation

Second order perturbation

Third order perturbation
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Figure 12 - Navier-Stokes density profiles in a normal shock wave
(M1 = 3.0). A comparison of density profiles based on
the methods of numerical integratioa and perturbation
expansion.

Numerical integrati-n

.......... Zeroth order perturbation

First order perturbation

Second order perturbation

Third order perturbation
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Figure 13 - Navier-Stokes density profiles in a normal shock wave
(MI = 4.0). A comparison of density profiles based on
the methods of numerical integration and perturbation
expansion.

Numerical integration

.......... Zeroth order perturbation

First order perturbation

Second order perturbation

Third order perturbation
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successive approximations of the perturbation method are converging

toward the Runge-Kutta result. The agreement between the pertur-

bation results and numerical integration is satisfactory for the

lower Mach numbers throughout the profile, but it would be desirable

to know the perturbation results to another order or two for the

higher Mach numbers to do justice to the upstream portion of the

prcfile.

The convergence of the perturbation results toward the Runge-

Kutta result is also manifested in plots of the asymmetry quotient,

as shown in Figure 14.

Results for the Burnett Density Profile Based
on the Methods of Numerical Integration

and Perturbation Expansion

The results of the perturbation method, as applied to the

Burnett density profile, are compared with the Runge-Kutta results

in Figures 15 and 16. Figures 17 and 18 give the perturbation

results for Mach numbers beyond the range of applicability of

numerical integration. Figure 19 contains a comparison between the

asymmetry quotient as determined by numerical integration (up to

M 2), and the assymmetry quotient as determined by perturbation

expansion.

Figures 15 and 16 show, as in the case of Navier-Stokes

equations, that the perturbation results are converging toward the

(0)'Since R O  is symmetric yielding Qp= 1 for all Mach
numbers, these results have been omitted from all plots of the
asymmetry quotient.
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flure 14 - Density asymmetry quotient (Q ) versus M from the Navier-
Stokes perturbation expansion. A comparlson of the results
for Q based on the methods of perturbation expansion and
numerical integration.

Nunmerical integration

First order perturbation expansion

Second order perturbation expansion

Third order perturbation expansion
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Figure 15 - Burnett density profiles in a normal shock wave (MI = 1.5).
A comparison of density profiles based on the methods of
numerical integration and perturbation expansion.

Numerical integration

First order perturbation

Second order perturbation

Third order perturbation

The third order perturbation profile is indiscernible from
the numerical integration profile within the scale of the
figure.
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Figure 16 - Burnett density profiles in a normal shack wave (Ml = 2.0).
A comparison of density profiles based on the methods of
numerical integration and perturbation expansion.

Numerical integration

_.. First order perturbation

Second order perturbation

- Third order perturbation
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Figure 17 - Burnett density profiles in a normal shock wave (M 3.0).

A comparison of density profiles determined from te
perturbation expansion.

First order perturbation

Second order perturbation

Third order perturbation
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Figure 16 - Burnett density profiles in a normal shock wave (M 4.0).
A comparison of density profiles determined from tie
perturbation expansion.

First order perturbation

Second order perturbation

Third order perturbation
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Figure 19 -Density asymmetry quotient (Q ) versus M 1 from the
Burnett perturbation expansioR. A comparison of the

,results for Q Pbased on the methods of perturbation
~expansion and numerical integration.
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Runge-Kutta result. This conclusion is tempered, but not vitiated,

by the comparison of asymmetry quotients in Figure 19, which

likewise indicate a tendency toward convergence.

Intuitively Trustworthy Parts of the Results
for the Density Profile through Super-

Super-Burnett Order Based on the
Method of Perturbation Expansion

The Chapman-Enskog development provides a criterion for

identifying the trustworthy parts of predictions of the Navier-

Stokes or higher ordez gasdynamic equations. Predictions of the

Navier-Stokes equations may be trusted only through first order in

the mean free path, because the Burnett contributions to the stress

and heat flux are of second order in the mean free path. Similarly,

predictions of the Burnett equations may be trusted only through

second order in the mean free path, because the Super-Burnett con-

tributions to the stress and heat flux are of third order in the

mean free path, etc.

In the previous chapter it was pointed out tha. the pertur-

bation expansion may be applied with equal justification to all the

higher order gasdynamic equations through Super-Super-Burnett order,

and presumably this feature persists to all orders of the Chapman-

Enskog development. Accordingly, the results of a particular order

of the perturbation expansion may be regarded as trustworthy only

if they are unaffected by additional Chapman-Enskog contributions

to the stress and heat flux. Thus, the Navier-Stokes result for

R(0 ) is trustworthy, but R( ) R(2) and R(3) are not trustworthy
P p p p



97

because they are modified by the inclusion of Burnett (and higher

Chapman-Enskog order) contributions to the stress and heat flux.

Likewise, the Burnett results for R (0) and R(I ) are trustworthy,
p p

but R(2 ) and R P are not trustworthy, etc.p p

According to the viewpoint explained in the preceding two

paragraphs, the trustworthy part of the Super-Burnett result for

the density profile is

R(O) + E: R(1 + C2 R (2)

P P P

and the trustworthy part of the Super-Super-Burnett result is

R(0) +c (1) 2 (2) +3 (3)
RP +cRP +CRP +CRP

These trustworthy parts of the predictions of the density profile

are exhibited in Figures 20 through 23, and the corresponding results

for the asymmetry quotient are exhibited in Figure 24. The trust-

worthy parts of the Navier-Stokes and Burnett calculations have been

omitted from Figures 20 through 24 to avoid undue cluttering of the

figures, but the Navier-Stokes numerical integration results have

been included to provide an indication of the magnitude of higher

order Chapinan-Enskog effects. These figures may be said to provide

a hint that extremely high orders of Ehe Chapman-Enskog development

will not be required for a satisfactory theory of shock structure.

$
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Figure 20- Super--Burnett and Super-Super-Burnett density profiles
in a normal shock wave (M1 = 1.5). A comparison of the
trustworthy parts of the perturbation results for Super-
Burnett and Super-Super-Burnett with the Navier-Stokes
numerical Integration results.

Navier-Stokes numerical integration

.... .. Second order Super-Burnett perturbation

Third order Super-Super-Burnett perturbation
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Figure 21 - Super-Burnett and Super-Super-Burnett density profiles

in a normal shock wave (M1  2.0). A comparison of the
trustworthy parts of the perturbation results for Super-
Burnett and Super-Super-Burnett with the Navier-Stokes
numerical integration results.

Navier-Stokes numerical integration

Second order Super-Burnett perturbation

Third order Super-Super-Burnett perturbation
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Figure 22 - Super-Burnett and Super-Super-Burnett density profiles
in a normal shock wave (M1  3.0). A comparison of the
trustworthy parts of the perturbation results for Super-
Burnett and Super-Super-Burnett with the Navier-Stokes
numerical integration results.

Navier-Stokes numerical integration

Second order Super-Burnett

Third order Super-Super-Burnett

X
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Figure 23 - Super-Burnett and Super-Super-Burnett density profiles
in a normal shock wave (M1 = 4.0). A comparison of the

trustworthy parts of the perturbation results for Super-
Burnett and Super-Super-Burnett with the Navier-Stokes
numerical integration results.

Navier-Stokes numerical integration

Second order Super-Burnett

Third order Super-Super-Burnett
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Figure 24 - Density asymmetry quotient (Q ) versus M from the Super-
Burnett and Super-Super-Bu-ne~t perturbation expansions.

A comparison of the trustworthy parts of the perturbation
results for Super-Burnett and Super-Super-Burnett expan-

sions with Navier-Stokes numerical integration results.

Navier-Stokes numerical integration

.. . Second order Super-Burnett perturbation

Third order Super-Super-Burnett perturbation



CHAPTER VI

COMMENTS AND OUTLOOK

The general pattern among the numerical coefficients in the

perturbation results derived in the preceding chapters may be

obtained from the differential equation

d- = R - R + A1[R02I A E

+ A2 P + A 3[R P13 + A 4 RP]4 C2

A5 + A6 [R + A[R]4 + A[ (VI-l)

and the a ebraic rela ion

R T =R pl g[-R]Rp F

R+Al,[R R] 2 + A[R +A 6 Rj

13 R P+ A 14RlP + A 15R + A 16R +A2 [1
+ A17 Rp+A l8P 2R + 19 + [ A2J 1 (VI-2)

by expanding R and RT in powers of C. This observation constitutes

an explanation or interpretation of the general pattern. The

first-order differential equation (VI-1) is in terms of the unex-

panded normalized density R and may be integrated using standard
p

Runge-Kutta numerical integration methods. The normalized
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temperature profile may then b6 determined from the algebraic

equation (VI-2) relating RT and Rp.

In carrying out the algebraic determination of the RT(Q)

for an expansion of K2 in which the numerical values of the coeffi-

cients were unspecified

K2 = a I1 + + aX3  + X4E 4 + (VI-3)112M2

it was found that all of the terms containing the expansion coef-

ficients (a ) cancel during the calculation. Thus, the final rela-
i

tionship (VI-2) between RT and R Pis independent of the choice for

K2 " This is a satisfying result because R should be uniquelyK2* T

determined by R , assuming each is a monotonic function of z,

quite independent of any reciprocal length scale K2. Also, in the

analytic expression for the R , it turns out that the ai are
P

uniquely determined for eazh set of the gasdynamic equations from

the requirement that the ratio R( /R be bounded throughout the
P P

shock wave for each (j). In order for this ratio to be finite, the

a. must have the values as specified in Table I for each of the

gasdynamic developments.

The upstream-downstream symmetry observed in the basic

gasdynamic differential equations leads to interrelationships

among the perturbation coefficients A in (VI-I). Since formally
n

2_equivalent expansions for dR /dz may be obtained based on (M -l)
P

and K2 or (M -1) and Ki, and since the expansions must represent

one and the same differential equation for R, roughly half the

4P
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TABLE I

COEFFICIENTS a1 FOR K2

Super-Super-
a 1  Navier-Stokes Burnett Super-Burnett Burnett

1  3 3 3 3
7 7 7 7

a2  9 102 102 102

3 3 332(7) 2(7) 3  2(7) 2(7)

a3  369 4194 14190 14190

4(7)5 4(7)5 4(7)5 4(7) 5

a4  13509 291234 1123053 1058952

8(7) 8(7)7 8(7) 8(7)

-
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coefficients in each order of C are determined by the other half

(and coefficients from lower orders of 6).

The consequences of upstream-downstream symmetry indicate

that it may be possible to extend the perturbation results to higher

order in 6 with somewhat less labor than was expended in this

report.

All profile and asymmetry data calculated in this report.

have been for Maxwell molecules, for which the viscosity-temperature

relation is p-T. Numerical integration results for the Navier-

Stokes gasdynamic equations :ay also be obtained for more realistic

intermolecular potentials by using the viscosity-temperature

relation p-cCTW, where w is fractional. For purposes of these final

remarks, the Navier-Stokes results for a realistic potential

(Ii-T0 68) have been calculated and are compared with recent experi-

mental data and perturbation results for Maxwell molecules in

Figure 25.

The perturbation results for the asymmetry in the density

profile in c Maxwell gas, although based on an idealized molecular

model,rasemble the trend of discrepancy between current experimental

results and the quantitatively incorrect Navier-Stokes results.

it seems reasonable to hope that use of a more realistic

p Ceitial model, together with an extension of the perturbation

method to one or perhaps two additional orders, might lead to

definitive checks on the nonlinear features of the Boltzmann

c,' lision operator, especially in view of the inadequacy of the

VNavier-Stoes equations even for low Mach numbers.
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Figure 25 - Density asymmetry quotient (Q ) in a normal shock wave

as a function of upstream Macd number (M1), A comparison
of Navier-Stokes numerical integration (realistic poten-
tial) and third order perturbation (Maxwell molecules)
results with experiment.

... Navier-Stokes numerical integration

Navier-Stokes third order perturbation

Super-Super-Burnett third order perturbation

0 Experiment - Alsmeyer (1975)

Experiment - Schmidt (1969)
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THE MAXWELL EIGENFUNCTIONS
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The eigenfunctions C () used in the moment calculations! r,2

of Chapter II are formed from associated Laguerre polynomials

L (+c/2(2 ) and zona± harmonics ck P()
r

r,() + 1 2 (c2 ) crk' = Lr (C)CP ( Z) •(A-1)

The associated Laguerre polynomials may be determined from the

generating function

2 t
e -- t 00 k+12 2

e = E L%+ /  (c 2  t r  (A-2)
(-t)Z + 3 / 2  r=0 r

and the Legendre polynomials P (x) may be determined fromn

Rodrigues' formula

1 (xd dn [x21 n

Sx(x)21 n (A-3)2 2n! dx n

The Maxwell eigenfunctions needed in this effort together

with their associated eigenvalues, c r, ,' are given in Table II.

In Table II, A9 is a pure number which has been defined

in Chapter II.

Useful relations among the T r,kc) are listed below:

c Y 0 0 (
c) = T0 1 (c) ;  (A-4)

z rO rl(c) - T 1 (c), r>l; (A-5)

tWe adopt the c-nvention that A denotes a unit vector
parallel to A for any A.

F
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TABLE II

MAXWELL EIGENFUNCTIONS AND ASSOCIATED EIGENVALUES

r T c

d0 0 1

3 21 0 2

2 0 15 52 1 4

O 1 c

2 1 r35 7 2+1 c4) C7

O 2 (~2~1 2] T
1(2Z2TJ 2 2

1 2 [7 _c2 (
2 4~ 2

0(35 3 2)O 3 ~ j~cz -,cc 4 TA 2
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+ 4-

+ 9'+' (c), k>1; (A-6)

z r~jk 22.+1 (r + Z. + -1 (r+1) r~lk

c)- (A-7)

z
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ROOTS OF THE CHARACTERISTIC POLYNOMIALS
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The Mach number dependent length scales alluded to in

Chapters III and IV (in conjunction with the linearization of the

gasdynamic differential equations) may be determined by solving

for the roots of the characteristic polynomials which are obtained

as a result of the linearization process. The characteristic

ii

polynomials in Li = p Ki given below, containing the Mach
pi i

number Mi as a parameter, were so obtained.

NAVIER-STOKES:

20 L2 + (9-23M2) Li + 6 M2 (M2 1 0 (B-1)
1

BURNETT:

432
70 L 180 L +291 M2 L2

i i i i

.1 Li + 4 MI 1) -2-I 81 - 207 MML 4 0 (B-2

SUPER-BURNETT:
+ 29160 5 28980 M 2 .

7850 L i i

+20475 M4~ - 542 M 2 L 36(291) M4L2
L 4 i - Mi L

6 4i
+136 (207) M~ - 36(81) M i] Li

- 54(36) Mi M- = 0 (B-3)
Ii '

XU
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SUPER-SUPER-BURNETT:

8 732 8 399(625)Li - 200(63)(521)Li

2 4 2 5
+ 6300 (3791)M i Li  40(P1)(49)(59)M Li

+350(27)(2287)M 4 Li 4 54(49)M 4[ 2275M4 2- 603 L 3

+ 8(49) (81)(97)M L i - 8(49)(243)M 3M2 
- L,

+ 16(49)(729)M8 [I- i = 0 (B-4)

The roots of each characteristic polynomial far upstream

(LI) or far downstream (L2 ) may be determined for any selected

upstream Mach numbet (M1 ) or its corresponding Rankine-Hugoniot

downstream Mach number (M ) using standard computer library routines.
2

The results given in the tables and figures which follow were

computed to twelve decimal accuracy.

Figures 26, 27, 28, and 29 present plots of the results for

L versus M1 and L2 versus M as determined from computer solutions

of equations (B-l), (B-2), (B-3), and (B-4), respectively. The real

L. and the real parts of the complex L are plotted as solid lines
1i

and the imaginary parts of Ohe complex L are plotted as broken lines

in the figures. The corresponding real and imaginary parts of the

conjugate pairs are appropriately identified in each figure.

The physically significant )roots K2 , which provide appro-

priate length scales for each of the gasdynamic developments, are

presented for a range of upstream Mach numbers in Table III
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TABLE III

PHYSICALLY SIGNIFICANT 2

Super-Super-
M1 Naiver-Stokes Burnett Super-Burnett Burnett

1.1 -0.07167703 -0.06685100 -0.06633523 -0.06612403

1.2 -0.12285635 -0.10793995 -0.10594205 -0.104A7577

1.3 -0.16089605 -0.13425755 -0.13066329 -0.12708902

1.4 -0.19005288 -0.15164829 -0.14673941 -0.14077175

1.5 -0.21295431 -0.16341863 -0.15753600 -0.1492311]

1.6 -0.23130542 -0.17153184 -0.16496566 -0.15452634

1.7 -0.24625774 -0.17720053 -0.17017150 -0.15784456

1.8 -0.25861475 -0.18119856 -0.17386660 -0.15989620

1.9 -0.26895253 -0.18403361 -0.17651194 -0.16112073

2.0 -0.27769376 -0.18604662 -0.17841433 -0.16179769

2.1 -0.28515479 -0.18747177 -0.17978304 -0.16210907

2.2 -0.29157651 -0.18847010 -0.18076370 -0.16217567

2.3 -0.29714518 -0.18915860 -0.18145944 -0.16207889

2.4 -0.30200677 -0.18961924 -0.18194438 -0.16187431

2.5 -0.30627706 -0.18991189 -0.18227243 -0.16160018

2.6 -0.31004889 -0.19008036 -0.18248322 -0.16128305

2.7 -0.31339746 -0.19015700 -0.18260620 -0.16094136

2.8 -0.31638419 -0.19016S84 -0.18266339 -0.16058798

2.9 -0.31905971 -0.19012490 -0.18267137 -0.16023179

3.0 -0.32146603 -0.19004769 -0.18264270 -0.15987893
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TABLE III (continued)

Super-Super-
4 M1  Naiver-Stokes Burnett Super-Burnett Burnett

3.1 -0.32363828 -0.18994443 -0.18258696 -0.15953354

3.2 -0.32560601 -0.18982285 -0.18251144 -0.15919835

3.3 -0.32739421 -0.18968880 -0.18242175 -0.15887508

3.4 -0.32902418 -0.18954675 -0.18232219 -0.15856475

3.5 -0.33051413 -0.18940005 -0.18221604 -0.15826785

3.6 -0.33187970 -0.18925125 -0.18210585 -0.15798450

3.7 -0.33313441 -0.18910227 -0.18199355 -0.15771459

3.8 -0.33428998 -0.18895455 -0.18188062 -0.39745783

3.9 -0.33535662 -0.18880913 -0.18176819 -0.15721379

4.0 -0.33634327 -0.18866679 -0.18165710 -0.15698200
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GENERAL FORM OF THE EQUATIONS FROM THE PERTURBATION DEVELOPMENT

AND GENERAL FORM OF THE SOLUTIONS TO THE DIFFERENTIAL EQUATIONS

FOR THE NORMALIZED DENSITY
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The perturbation metloods applied in each of the gasdynamic

developments of Chapter II produce a set of first order linear

differential equations for the perturbed density constributions

R(0 ), R (I )  R (2 )  R(3)  etc., and a set of algebraic relationships

p ' R(2) R (3)
for the perturbed temperature contributions R 0 )  R -2, R(T 3

etc., in terms of the perturbed densities. In the course of the

perturbation calculations, a pattern in the analytical results

recurred in each of the gasdynamic developments.

Thus, the perturbation equations for the normalized density

and temperature, applicable to any of the gasdynamic developments,

are of the following general form:

d2 _R(O) _ R 2)

R p R (C-1)

d - 0] 2 3

P- 1-2R(O) R(2)+2A [R0) - AlO C22)

dR ( 3 ) 2 2

-P- 12R(0)R(3)+2A RO)R(l) -3A 
[ R() [R()R(2)

dr, P - pJp 1 p O l~ P - P P

1 p p 1 [
+ A2  I [R(0)] + A [R (0) (C-3)

2J P[ JL

P 1-RO R + +2R )R( _3A[R 1 AR 1 +AI R 1

+ 4AR 3R (l) +AjRO)J 2 6A [R() 3 [RO 4+A 81 O)
4[Qp p 6P +A P P

(C-4)

7"

•••I mm>wn mu
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Rp(0) (o) C-5)

(1), R(1) 1 (0) (0) (C-6)

(2) (2) (0)( + (0) (c)+A f
RT = A912RP)RP+ 10 R 1+AR

(C-7)

R43)= RP3  9  ( )R2+ R(1)+2A R( )R(1)+3A [R(O)] 2 p
R p p 10 p p p 2L  p J p

+A [R () +A R (O+ R+l () 3+A3AO~

(C-8)

+ 13 p 14O p I p A5~ 11

(4 ) F() 1 (A ] ( )
- AR l-2R ) 1 +2p ' 18 p3A

O P
+ AR R 1+A R (0)ea1) +A R () At ] c

- p

( 3 ) 2t . m a b e) e x p r s s e a s f n t o a s o f t e q a t t

2A19 R R)) In e +a) intace the difrentl eAtin can be arranged

in the form

dR(n) (0)1 ()

+ Al.R + A (C-9O)

dr2L p  -  p

Th ofiinsA dtrie nec ftegsyai
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An equivalent expression for (C-10) is

I (n) ln

d R 0  
1=(n (C-li)' : d R(0)rl - pR ( 0 ) ]  R(0)[]R( 0 )]

or

nd (n) R

d -(0 ) ( 01 - ] ( d l I

Using the chain rule to obtain the functional F(
n ) [1-R (0)

from- d F (n) [lR(0 (C-n 3

d[ P~) F*RJ -R [R_____

yields

F 1-R1-RO] -1~ (C- 14)

With F()[1-R(O)] known, both sides of equation (C-12) are exact
P

differentials and may be integrated to yield R with the inte-
P

gration constant determined from the conditions that at C = 0,

R(n) = -nO where 6r0 is the Kronecker delta.
P 2

For examl , the differential equation for R(1) is
P

dRP + 2[fR(0)- 1] R') = A,1 lR(O] [R(O 2 (-5d r-] - 1 P ( -5

The results for I(l) andFM R(O are

I~) A1 1 -l -R(0O )1 IR( (C-16)

and

1 R (O )

FA - -1 d~ 0 j .

I !I I I J[ 1I I R I )]



4 134

Thus, using (C-17) in (C-12) and integrating, the result is

()= R(0)[IR(0) - A9.n [1-R 0)] + Q, (C-18)

where Q1 is an integration constant. Evaluating Q1 from the

boundary conditions on R(0 ) and R( ) at 0 yields
p p

1
Q1 A1 £n 2. (C-19)

I .~(2) an (3)mybesld

The differential equations for R and R may be solved
p p

using the same procedures described above. The solutions are given

in equations (111-53) and (111-54). The differential equation for
R(0) ,
( can be integrated without using this method. The result for

R(0) is given in equation (111-42).P

Since the differential equations for the R have the same
p

general form for each gasdynamic development, the solutions for the

R(n) may also be expressed in a general form. The coefficients

of the integrated results are functions of the original An. The

results for R and R I ) are relatively simple. However, the
cefcts in R)

i (2) and R(3 ) are much more involved, namely

R (2)= R(0) 1-- I (R 
O)  Bl[-R 0]

+  B2 n [1-R(
0

+3 [lR(O] k~n -R (0 + B 4Zn 2[l1-R (0

i +B 5[-R' 0 ] kn2 [-R(01 + Q2 (C-29)

and

4,
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(3) Ro(0 _-o(0 Cr-R( + C2£n 1-R(0

P )[ RP I C1PJ + 2 L

+C3 [-R 0)j kn[-R(0 + C4  £n[l-R 0 ]

+C [1-R(')] kn 2 [l-R~o) + c6 kn 3[1- R (0]

+C *1-R (; 8 1 -Oj 9nR1-J(

+C 1l-R O) -~[RO)+ dIo[lR(O)] 9,n HR~o)]

+Cl1 [l-R(0o1 2 kn 3 [-R(O] + Q3 (C-21)

The results for the coefficients Bn and Cn are presented in Tables

V and VI respectively.

I
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TABLE V

COEFFICIENTS B FORR
n p

n B
n

1 - - 2  2
-4 A A1 Q 1 + Q

2 A3 + 2A4 + A1 Q1

3 A2 _ 2A Q1 1 1

4 -1/2A 2

2
5 A1
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TABLE VI

COEFFICIENTS C FOR
n p

n Cn

32

145AA + A3 + 2AA 3 - A7- 3A8 + (2A2 + A3  4A4)Q1

2
+ A1QI - A1Q2 + 2Q1Q2

2 A + 2A + 3A + (-A3 - 2A 4 )Q  + A Q2
6 7 8 3 41 1

3 -2A - 2AIA - 6A A + (-3A 4- 2A + 4A4)Q + 2A Q 2 2AIQ
1 1 3 A1A4  i 4Q 1  A1Q1  2Q

4 A A + 2A A +1/2 2Q1A3 1 4 /2AQ 1

3/2A3 - 2AIA 3- 4A A4- 3A1Q2

1/2A3 + 1/2A + (-2A2 - 3A4)I 5/ Q2 +3
-1AI 5/2A

1 8 1 41 1 1

7 2A1 + 3A A4+5A2Q - 3A Q2

8 -5/2A3 + 3A2 Q
1 1 1

9 -1/6A3

10 A3

-A3L1 -A1


